PWDGAN: Generating Adversarial Malicious URL Examples for Deceiving Black-Box Phishing Website Detector using GANs

22:50 20/04/2021

In recent years, the Internet has witnessed a significant increase in phishing attacks. These attacks are not merely deceiving Internet users to get their sensitive information, but phishing attacks are developing more and more sophisticated, using many new techniques to try to bypass the traditional defense solution. With the help of machine learning and deep learning algorithms, there are researched solutions and software products to help improve the ability to detect phishing attacks. In this paper, we build a generative adversarial network (GAN) – a deep learning-based framework to conduct black-box attacks based on Phishtank and Alexa datasets that try to evade and bypass ML-based phishing detectors. The results of the paper demonstrate the effectiveness of GAN adoption in creating new patterns that can evade and bypass phishing detectors. These newly generated patterns can serve as material for future research in phishing website detection and improve the ability to detect novel anomaly attacks.

Penetration testing is one of the most common methods for assessing the security of a system, application, or network. Although there are different support tools with great efficiency in this field, penetration testing is done mostly manually and relies heavily on the experience of the ethical hackers who are doing...
Software-defined networking (SDN) is a potential approach for modern network architecture, which has received great attention recently. SDN-based networks also face security issues, and they can become targets of cyberattacks. Cyber threat hunting is one of the security solutions proposed for early attack detection in SDN. Developing machine learning-based IDS...