Nghiên cứu của nhóm sinh viên về lĩnh vực Phát hiện và khai thác lỗ hổng bảo mật phần mềm được đăng trên tạp chí IEEE Access

NGHIA TO
17:00 04/07/2024

✨✨ CHÚC MỪNG NGUYỄN PHÚC CHƯƠNG & PHẠM THÀNH THÁI – SINH VIÊN NGÀNH ATTT, KHOA MẠNG MÁY TÍNH VÀ TRUYỀN THÔNG ĐÃ CÓ BÀI NGHIÊN CỨU ĐẦU TIÊN ĐƯỢC ĐĂNG TRÊN TẠP CHÍ IEEE ACCESS (Q1).

Vừa qua, tạp chí IEEE Access (tạp chí thuộc nhóm Q1 – top 25% tạp chí danh giá nhất trong lĩnh vực Kỹ thuật và Khoa học máy tính) đã đăng bài nghiên cứu “𝐀 𝐂𝐨𝐯𝐞𝐫𝐚𝐠𝐞-𝐠𝐮𝐢𝐝𝐞𝐝 𝐅𝐮𝐳𝐳𝐢𝐧𝐠 𝐌𝐞𝐭𝐡𝐨𝐝 𝐟𝐨𝐫 𝐀𝐮𝐭𝐨𝐦𝐚𝐭𝐢𝐜 𝐒𝐨𝐟𝐭𝐰𝐚𝐫𝐞 𝐕𝐮𝐥𝐧𝐞𝐫𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐃𝐞𝐭𝐞𝐜𝐭𝐢𝐨𝐧 𝐮𝐬𝐢𝐧𝐠 𝐑𝐞𝐢𝐧𝐟𝐨𝐫𝐜𝐞𝐦𝐞𝐧𝐭 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠-𝐞𝐧𝐚𝐛𝐥𝐞𝐝 𝐌𝐮𝐥𝐭𝐢-𝐋𝐞𝐯𝐞𝐥 𝐈𝐧𝐩𝐮𝐭 𝐌𝐮𝐭𝐚𝐭𝐢𝐨𝐧” của nhóm sinh viên chuyên ngành An toàn thông tin, Khoa MMT-TT, Trường ĐH CNTT. Đây là công trình khoa học về lĩnh vực Phát hiện và khai thác lỗ hổng bảo mật phần mềm được nhóm sinh viên thực hiện tại PTN ATTT trong quá trình thực hiện Khóa luận tốt nghiệp (KLTN) trong năm vừa qua.

Thông tin chung về nhóm SV:
Tên bài báo:
Giảng viên hướng dẫn:
Abstract:

Fuzzing is a popular and effective software testing technique that automatically generates or modifies inputs to test the stability and vulnerabilities of a software system, which has been widely applied and improved by security researchers and experts. The goal of fuzzing is to uncover potential weaknesses in software by providing unexpected and invalid inputs to the target program to monitor its behavior and identify errors or unintended outcomes. Recently, researchers have also integrated promising machine learning algorithms, such as reinforcement learning, to enhance the fuzzing process. Reinforcement learning (RL) has been proven to be able to improve the effectiveness of fuzzing by selecting and prioritizing transformation actions with higher coverage, which reduces the required effort to uncover vulnerabilities. However, RL-based fuzzing models also encounter certain limitations, including an imbalance between exploitation and exploration. In this study, we propose a coverage-guided RL-based fuzzing model that enhances grey-box fuzzing, in which we leverage deep Q-learning to predict and select input variations to maximize code coverage and use code coverage as a reward signal. This model is complemented by simple input selection and scheduling algorithms that promote a more balanced approach to exploiting and exploring software. Furthermore, we introduce a multi-level input mutation model combined with RL to create a sequence of actions for comprehensive input variation. The proposed model is compared to other fuzzing tools in testing various real-world programs, where the results indicate a notable enhancement in terms of code coverage, discovered paths, and execution speed of our solution.

Toàn văn bài báo: https://ieeexplore.ieee.org/document/10580893
TIN LIÊN QUAN
𝐆𝐨𝐨𝐠𝐥𝐞 𝐂𝐚𝐩𝐭𝐮𝐫𝐞 𝐓𝐡𝐞 𝐅𝐥𝐚𝐠 được tổ chức bởi nhóm 𝐆𝐨𝐨𝐠𝐥𝐞 𝐒𝐞𝐜𝐮𝐫𝐢𝐭𝐲, có những thử thách từ các hạng mục khác nhau như: 𝐖𝐞𝐛, 𝐏𝐰𝐧, 𝐂𝐫𝐲𝐩𝐭𝐨, 𝐑𝐞𝐯𝐞𝐫𝐬𝐢𝐧𝐠, 𝐌𝐢𝐬𝐜. Thông tin về 𝐆𝐨𝐨𝐠𝐥𝐞 𝐂𝐚𝐩𝐭𝐮𝐫𝐞 𝐓𝐡𝐞 𝐅𝐥𝐚𝐠 𝟐𝟎𝟐𝟓 như sau: Thời gian diễn ra: Từ sáng 𝟏𝐡𝟎𝟎 ngày 𝟐𝟖/𝟎𝟔/𝟐𝟎𝟐𝟓 (Thứ 7) đến sáng...
SỰ KIỆN "WANNASETUP" ĐÃ CHÍNH THỨC BẮT ĐẦU! Bạn có đang sở hữu một góc học tập/làm việc siêu chất khiến ai nhìn cũng trầm trồ? Bạn có những món đồ chơi công nghệ độc đáo như bàn phím cơ “đỉnk kao”, dàn màn hình “Vip Pro” hỗ trợ tối...
Phòng Thí nghiệm An toàn Thông tin chào đón các bạn sinh viên đam mê lĩnh vực an ninh mạng và kiểm thử xâm nhập tham gia chương trình Thực tập Nghiên cứu (Research Intern) - Mùa hè năm 2025. Trong thời gian thực tập, các bạn sẽ có cơ...