Nghiên cứu của học viên cao học về Phương pháp phát hiện xâm nhập được chấp nhận đăng tại Hội nghị khoa học quốc tế SOICT 2024

NGHIA TO
9:00 14/12/2024

Chúc mừng học viên cao học Phạm Trần Tiến Đạt cùng nhóm nghiên cứu InsecLab đã có bài báo nghiên cứu về Phương pháp phát hiện xâm nhập được chấp nhận đăng tại Hội nghị khoa học quốc tế "the 13th International Symposium on Information and Communication Technology (SOICT 2024)".

Hội nghị SOICT 2024 sẽ diễn ra tại Thành phố Đà Nẵng do Trường Công nghệ Thông tin và Truyền thông – ĐH Bách Khoa Hà Nội, Trường ĐH Khoa học Tự nhiên - ĐHQG TP. HCM, Trường ĐH Bách Khoa, ĐH Đà Nẵng phối hợp tổ chức vào ngày 13 - 15.12.2024.Bài báo khoa học là kết quả đề tài nghiên cứu được học viên Phạm Trần Tiến Đạt thực hiện với sự hướng dẫn của các thầy trong thời gian bạn tham gia nghiên cứu khoa học về Phương pháp phát hiện xâm nhập dựa trên dữ liệu nguồn gốc sử dụng kỹ thuật học biểu diễn đồ thị tại Phòng thí nghiệm An toàn thông tin (InSecLab).

Thông tin về bài báo khoa học:

Tên bài báo:
Học viên thực hiện:
Chủ đề nghiên cứu:
Giảng viên hướng dẫn:

Thông tin chung:

Hội nghị SOICT 2024 là một hội nghị khoa học quốc tế bao gồm các lĩnh vực nghiên cứu quan trọng bao gồm Nền tảng AI và Dữ liệu lớn, Công nghệ mạng và truyền thông, Xử lý đa phương tiện, Kỹ thuật phần mềm, Ứng dụng AI, AI tạo sinh, Nghiên cứu và tối ưu hóa hoạt động ứng dụng, An toàn thông tin.

Abstract:

“Today, the evolution of attacks has made traditional defense methods insufficient for modern complex situations. Advanced Persis tent Threats (APTs), characterized by their persistence, sophistication, and diversity, are often initiated by large, well-organized, highly skilled hacker groups with clear objectives. Provenance-based Intrusion Detection Systems have become increasingly popular for their ability to detect sophisticated APTs attacks. Despite their potential, they face significant challenges related to accuracy, practicality, and scalability, especially in situations with insufficient training data. We propose PROVSHOT, the few-shot graph representation learning framework for intrusion detection system based on provenance data, combined with the Model-Agnostic Meta-Learning (MAML) algorithm to effectively classify malicious entities in scenarios with limited data. PROVSHOT incorporates semantic encoding of node attributes to enhance the representational capability of the nodes, helping the model make better predictions. We evaluate the model on three public datasets, including StreamSpot, Unicorn and DARPA E3. The results indicate that PROVSHOT can accurately predict APT attack types across all datasets, even with limited data.”

TIN LIÊN QUAN
Phòng thí nghiệm An toàn thông tin (InSecLab) cần tuyển 15 sinh viên Thực tập sinh nghiên cứu (Research Intern) – Kỳ Xuân 2025 để tham gia vào các mảng nghiên cứu chuyên sâu về an toàn thông tin và bảo mật tại InSecLab. Vị trí Thực tập sinh nghiên...
Bạn đã sẵn sàng thử thách bản thân với những thử thách CTF đỉnh cao chưa? LA CTF 2025 chính thức là vòng loại trước của DiceCTF Finals! ✨ Đội có điểm số cao nhất sẽ giành suất tham dự vòng Chung kết DiceCTF, sự kiện từng được tổ chức...
Chúc mừng 03 sinh viên ngành An toàn thông tin chương trình Chất lượng cao (Khoa Mạng máy tính và truyền thông) có bài báo khoa học về phương pháp phát hiện lổ hổng trong hợp đồng thông minh bằng học sâu đa thể thức dựa trên các mô hình...